Application of Double Negative Materials to Increase the Power Radiated by Electrically Small Antennas
نویسنده
چکیده
The effect of surrounding an electrically small dipole antenna with a shell of double negative (DNG) material ( 0 and 0) has been investigated both analytically and numerically. The problem of an infinitesimal electric dipole embedded in a homogeneous DNG medium is treated; its analytical solution shows that this electrically small antenna acts inductively rather than capacitively as it would in free space. It is then shown that a properly designed dipole-DNG shell combination increases the real power radiated by more than an order of magnitude over the corresponding free space case. The reactance of the antenna is shown to have a corresponding decrease. Analysis of the reactive power within this dipole-DNG shell system indicates that the DNG shell acts as a natural matching network for the dipole. An equivalent circuit model is introduced that confirms this explanation. Several cases are presented to illustrate these results. The difficult problem of interpreting the energy stored in this dipole-DNG shell system when the DNG medium is frequency independent and, hence, of calculating the radiationQ is discussed from several points of view.
منابع مشابه
Topology Optimization of Metamaterial-based Electrically Small Antennas
A topology optimized metamaterial-based electrically small antenna configuration that is independent of a specific spherical and/or cylindrical metamaterial shell design is demonstrated. Topology optimization is shown to provide the optimal value and placement of a given ideal metamaterial in space to maximize far-field radiated power.
متن کاملAnalytical and numerical investigation of the radiation from concentric metamaterial spheres excited by an electric Hertzian dipole
[1] The canonical problem of an electric Hertzian dipole radiating in the presence of a pair of concentric double negative metamaterial spheres is investigated analytically and numerically. The spatial distribution of the near field as well as the total radiated power are examined. The results are compared to those for the corresponding structures made of conventional double positive materials....
متن کاملA Study of Metamaterial Based Electrically Small Antenna to Enhance Gain
This is a review paper in which electrically small metamaterial-based antennas are discussed from the industrial point of view using mobile phones as the application example and dual band microstrip antenna with metamaterial structure for dual band operation. The most interesting feature of the design is the ability of enhancing the gain and total efficiency of the antenna without affecting the...
متن کاملA Study of Electromagnetic Radiation from Monopole Antennas on Spherical-Lossy Earth Using the Finite-Difference Time-Domain Method
Radiation from monopole antennas on spherical-lossy earth is analyzed by the finitedifference time-domain (FDTD) method in spherical coordinates. A novel generalized perfectly matched layer (PML) has been developed for the truncation of the lossy soil. For having an accurate modeling with less memory requirements, an efficient "non-uniform" mesh generation scheme is used. Also in each time step...
متن کاملMetamaterial-Based Antennas: Research and Developments
A brief review of metamaterials and their applications to antenna systems is given. Artificial magnetic conductors and electrically small radiating and scattering systems are emphasized. Single negative, double negative, and zero-index metamaterial systems are discussed as a means to manipulate their size, efficiency, bandwidth, and directivity characteristics. key words: metamaterials, electri...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2001